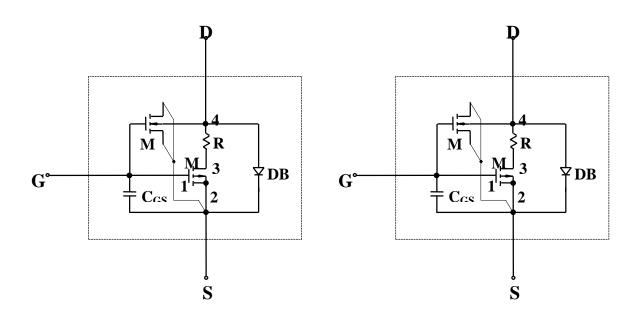


Dual P-Channel 1.8-V (G-S) MOSFET

Characteristics


- P-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to -5 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched C_{gd} model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

Model Subcircuit

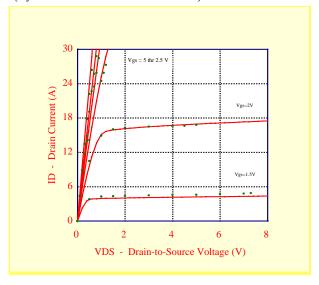
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

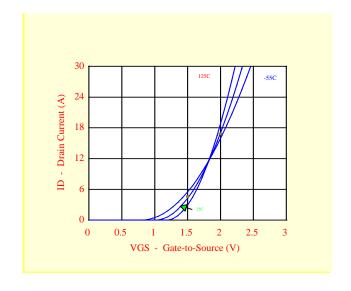
Siliconix 4/16/01 Document: 70921

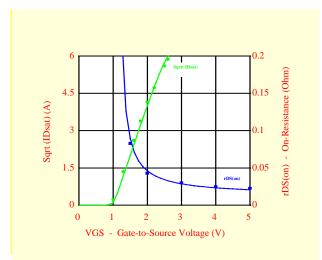
P-Channel Device (T_J=25°C Unless Otherwise Noted)

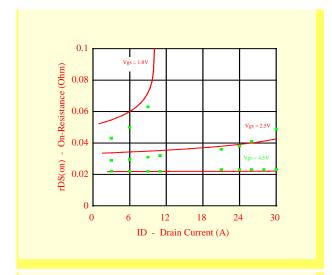
Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = -250 \mu {\rm A}$	0.84	V
On-State Drain Current ^b	$I_{D(on)}$	$V_{DS} = -8V, V_{GS} = -4.5V$	200	A
Drain-Source On-State Resistance ^b	$r_{\mathrm{DS(on)}}$	$V_{GS} = -4.5V, I_D = -5A$	0.022	
		$V_{GS} = -2.5V, I_D = -4A$	0.033	Ω
		$V_{GS} = -1.8V, I_D = -3A$	0.054	
Forward Transconductance ^b	g_{fs}	$V_{\rm DS} = -8V, I_{\rm D} = -5A$	19	S
Diode Forward Voltage ^b	V_{SD}	$I_{S} = -1.25A, V_{GS} = 0V$	0.76	V
Dynamic ^a				
Total Gate Charge	Q_{g}		20	
Gate-Source Charge	Q_{gs}	$V_{DS} = -6V, V_{GS} = -4.5V,$	4.5	nC
		$I_D = -5A$		
Gate-Drain Charge	Q_{gd}		3.5	
Turn-On Delay Time	$t_{d(on)}$		20	
Rise Time	$t_{\rm r}$	$V_{DD} = -6V, R_L = 6\Omega$	13	
Turn-Off Delay Time	$t_{d(off)}$	$I_{\rm D} \cong -1 A, V_{\rm GEN} = -4.5 V,$	57	ns
		$R_G = 6\Omega$		
Fall Time	$t_{ m f}$		24	
Source-Drain Reverse Recovery Time	t _{rr}	$I_{\rm F}$ = -1.25A,	28	
·		$di/dt = 100A/\mu s$		

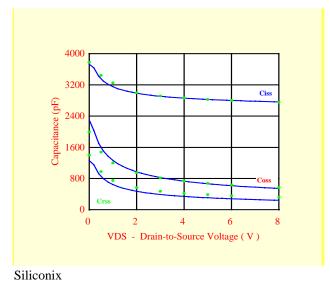
Notes:

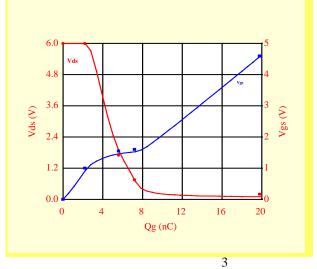

a) Guaranteed by design, not subject to production testing.


b) Pulse test: pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.


SPICE Device Model Si6967DQ




Comparison of Model with Measured Data (T_J=25°C Unless Otherwise Noted)



4/16/01 Document: 70921