DM7556/DM8556 TRI-STATE ${ }^{\circledR}$ Programmable Binary Counters

General Description

These circuits are synchronous, edge-sensitive, fully-programmable 4-bit counters. The counters feature both conventional totem-pole and TRI-STATE outputs; such that when the outputs are in the high impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip-flops on the positive-going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input of the next counter.

Connection Diagram

Order Number DM7556J or DM8556N See NS Package Number J16A or N16A

Function Table

Control Inputs					I/O Ports				Active Outputs			
$\overline{\text { LOAD }}$	CE	CLK	OD	Reset	$\mathrm{I} / \mathrm{O}_{\mathrm{A}}$	$\mathrm{I} / \mathrm{O}_{\mathrm{B}}$	$1 / 0_{C}$	I/OD	$Q_{\text {A }}$	Q_{B}	Q_{C}	Q_{D}
H	X	X	L	H	L	L	L	L	L	L	L	L
H	x	X	H	H	Z	Z	Z	Z	L	L	L	L
H	X	L	L	L	Q_{AO}	$\mathrm{Q}_{\mathrm{B} 0}$	Q_{CO}	Q 0	$Q_{\text {A0 }}$	Q_{B0}	$Q_{C 0}$	$Q_{\text {D0 }}$
H	X	L	H	L	Z	Z	Z	Z	$Q_{A 0}$	Q_{B0}	$Q_{C 0}$	$Q_{\text {D }}$
L	H	\uparrow	L	L	a	b	c	d	A	B	C	D
H	L	\uparrow	L	L		CO	NT			CO	NT	
H	L	\uparrow	H	L	Z	Z	Z	Z		CO	NT	

The I/O pins are used as inputs when they are TRI-STATED, and the $\overline{\text { LOAD }}$ input is Low. They are outputs and active when LOAD input is High and OD is Low.
H = High Level (Steady State)
L = Low Level (Steady State)
$\mathrm{X}=$ Don't Care including transitions
$a, b, c, d=$ The level of the steady state input at inputs A, B, C, D respectively
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of $Q_{A}, Q_{B}, Q_{C}, Q_{D}$ respectively, before the indicated steady state input conditions were established.
TRI-STATE is a registered trademark of the National Semiconductor Corporation.

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM85	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM7556			DM8556			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-2			-5.2	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				16			16	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 1)		0		25	0		25	MHz
tw	Pulse Width (Note 1)	Clock	25			25			ns
		Clear	20			20			
		Load	30			30			
${ }^{\text {t }}$ CE	Count Enable Time (Note 1)	Setup	30			30			ns
		Hold	-10			-10			
${ }^{\text {t SETUP(1) }}$	Setup Time High Logic Level (Note 1)	Data	25			25			ns
		Load	30			30			
$\mathrm{t}_{\text {HOLD }}(1)$	Hold Time High Logic Level (Note 1)	Data	5			5			ns
		Load	-10			-10			
${ }^{\text {tseTUP(0) }}$	Setup Time Low Logic Level (Note 1)	Data	30			30			ns
		Load	25			25			
$\mathrm{t}_{\text {HOLD }}(0)$	Hold Time Low Logic Level (Note 1)	Data	5			5			ns
		Load	-10			-10			
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-1.6	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM75	-25		-70	mA
			DM85	-25		-70	
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			75	100	mA
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time. Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency				25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output				22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output				44	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to MAX-CNT				33	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to MAX-CNT				33	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Reset to Output				44	ns
tpZH	Output Enable Time to High Level Output	Output Disable to Q				20	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Disable to Q				20	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output	Output Disable to Q		12			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output	Output Disable to Q		20			ns

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
 Order Number DM8556N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

