

TD350

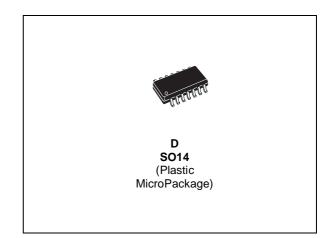
ADVANCED IGBT/MOSFET DRIVER

ADVANCE DATA

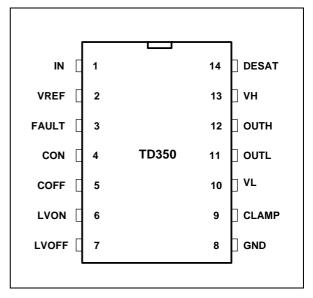
- 0.75A MIN GATE DRIVE
- NEGATIVE GATE DRIVE ABILITY
- INPUT COMPATIBLE WITH PULSE TRANSFORMER OR OPTOCOUPLER
- SEPARATE SINK AND SOURCE OUTPUTS FOR EASY GATE DRIVE
- TWO STEPS TURN-ON AND TURN-OFF WITH ADJUSTABLE LEVEL AND DELAY
- MILLER CLAMP FEATURE
- DESATURATION PROTECTION
- FAULT STATUS OUTPUT
- UVLO PROTECTION
- 2kV ESD PROTECTION

DESCRIPTION

TD350 is an advanced gate driver for IGBT and power MOSFET. Control and protection functions are included and allow the design of high reliability systems.

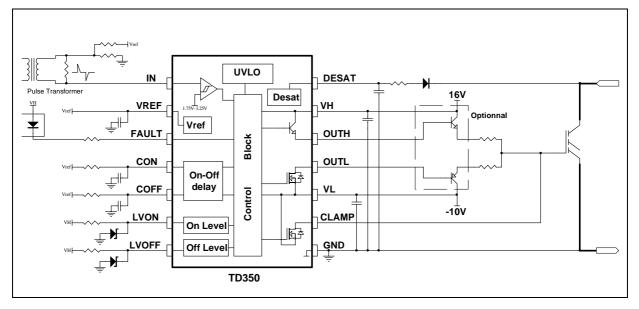

APPLICATION

MOTOR CONTROL


ORDER CODE

Part	Temperature	Package		
Number	Range	D	N	
TD350I	-40, +125°C	•		

 ${\rm D}$ = Small Outline Package (SO) - also available in Tape & Reel (DT) ${\rm N}$ = Dual in Line Package (DIP)



PIN CONNECTIONS (top view)

TD350

BLOCK DIAGRAM

PIN DESCRIPTION

Name	Pin Number	Туре	Function
IN	1	Analog input	Input
VREF	2	Analog output	+5V reference voltage
FAULT	3	Digital output	Fault status output
CON	4	Timing capacitor	Turn on delay
COFF	5	Timing capacitor	Turn off delay
LVON	6	Analog input	Turn on level
LVOFF	7	Analog input	Turn off level
GND	8	Power supply	Signal ground
CLAMP	9	Analog output	Miller clamp
VL	10	Power supply	Negative supply
OUTL	11	Analog output	Gate drive output (sink)
OUTH	12	Analog output	Gate drive output (source)
VH	13	Power supply	Positive supply
DESAT	14	Analog input	Desaturation protection

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VHL	Maximum Supply Voltage (VH - VL)	28	V
VH	Maximum VH voltage vs GND	28	V
VL	Minimum VL voltage vs GND	-12	V
Vout	Voltage on OUTH, OUTL, CLAMP pins	VL-0.3 to VH+0.3	V
Vdes	Voltage on DESAT, FAULT, LVON, LVOFF pin	-0.3 to VH+0.3	V
Vter	Voltage on other pins (IN, CON, COFF, VREF)	-0.3 to 7	V
Pd	Power dissipation	500	mW
Tstg	Storage temperature	-55 to 150	°C
Tj	Maximum Junction Temperature	150	°C
Rhja	Thermal Resistance Junction-Ambient	125	°C/W
Rhjc	Thermal Resistance Junction-Case	22	°C/W
ESD	Electrostatic discharge	2	kV

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
VH	Positive Supply Voltage vs GND	UVLO to 26	V
VL	Negative Supply Voltage vs GND	0 to -10	V
VH-VL	Maximum Total Supply Voltage	26	V
Toper	Operating Free Air Temperature Range	-40 to 125	°C

ELECTRICAL CHARACTERISTICS

Tamb = -20 to 125°C, VH=16V, VL=-10V unless otherwise specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Input	·					•
Vton	IN turn-on threshold voltage			1.0		V
Vtoff	IN turn-off threshold voltage			4.0		V
tonmin	Minimum pulse width		100	135	220	ns
linp	IN Input current				1	μΑ
Voltage ref	erence - Note 1					
Vref	Voltage reference	T=25°C Tmin <t<tmax< td=""><td>4.85 4.77</td><td>5.00</td><td>5.15 5.22</td><td>V V</td></t<tmax<>	4.85 4.77	5.00	5.15 5.22	V V
Iref	Maximum output current		10			mA

Note 1: Recommended capacitor range on VREF pin is 10nF to 100nF.

ELECTRICAL CHARACTERISTICS (continued) Tamb = -20 to 125°C, VH=16V, VL=-10V unless otherwise specified

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Desaturatio	on protection					
Vdes	Desaturation threshold		6.5	7.2	7.9	V
Ides	Source current			250		μA
Fault outpu	t					
tfault	Delay for fault detection				500	ns
VFL	FAULT low voltage	lfsink=10mA			1	V
Clamp	<u>.</u>		•			
Vtclamp	CLAMP pin voltage threshold			2.0		V
VCL	Clamp low voltage at Icsink=500mA	T=25°C Tmin <t<tmax< td=""><td></td><td></td><td>VL+2.5 VL+3.0</td><td>V V</td></t<tmax<>			VL+2.5 VL+3.0	V V
On-Off Dela	ау					
Vtdel	Voltage threshold		2.35	2.50	2.65	V
Rdel	Discharge resistor	l=1mA			500	Ω
On-Off Leve	els		•			
Iblvon	LVON peak input current (source)	LVON=12V		-1.6	-3	mA
Iblvoff	LVOFF peak input current (sink)	LVOFF=12V		120	200	μA
Violv	Offset voltage	LVON,LVOFF=12V	-0.4	-0.1	0.5	V
Outputs					1	
VOL1	Output low voltage at losink=20mA	T=25°C Tmin <t<tmax< td=""><td></td><td></td><td>VL+0.35 VL+0.5</td><td>V V</td></t<tmax<>			VL+0.35 VL+0.5	V V
VOL2	Output low voltage at losink=200mA	T=25°C Tmin <t<tmax< td=""><td></td><td></td><td>VL+1.0 VL+1.5</td><td>V V</td></t<tmax<>			VL+1.0 VL+1.5	V V
VOL3	Output low voltage at losink=500mA	T=25°C Tmin <t<tmax< td=""><td></td><td></td><td>VL+2.5 VL+3.0</td><td>V V</td></t<tmax<>			VL+2.5 VL+3.0	V V
VOH1	Output high voltage 1	losource=20mA	VH-2.5			V
VOH2	Output high voltage 2	losource=200mA	VH-3.0			V
VOH3	Output high voltage 3	losource=500mA	VH-5.0			V
tr	Rise time (2 step turn-on disabled)	CL=1nF, 10% to 90% VL=0 VL=-10V			80 130	ns ns
tf	Fall time (2 step turn-off disabled)	CL=1nF, 90% to 10% VL=0 VL=-10V			60 75	ns ns
tpd	Input to output propagation delay at turn-on (2 step delays disabled)	10% output change	270		800	ns
Δtw	Input to output pulse distortion	10% output change	60	90	120	ns
Under Volta	ige Lockout (UVLO)					
UVLOH	UVLO top threshold		10	11	12	V
UVLOL	UVLO bottom threshold		9	10	11	V
Vhyst	UVLO hysteresis	UVH-UVL	0.5	1		V
Supply curr	rent				•	
lin	Quiescent current	output=0V, no load			5	mA

57

FUNCTIONAL DESCRIPTION

Input

Input is compatible with optocoupler or pulse transformer. Input is triggered by signal edge and allows the use or low size, low cost pulse transformer. Input is active low (output is high when input is low) to ease the use of optocoupler. When driven by a pulse transformer, the input pulse (positive and negative) width must be larger than tonmin

Voltage reference

Voltage reference is used to build accurate timing for the two-level turn-on and turn-off with external resistor and capacitor.

Desaturation protection

Desaturation protection ensures protection of IGBT in case of overcurrent events. When the DESAT voltage goes higher that 7V, the output is driven low (with 2-level turn-off if applicable). FAULT output is activated. Fault state is exit at the next rising edge of IN input.

A programmable blanking time is used to allow enough time for IGBT saturation. Blanking time is made with internal current source and external capacitor.

DESAT input can also be used with an external comparator for overcurrent or overtemperature detection.

Active Miller clamp

έτ/

Miller clamp allows to control the Miller current during high dV/dt situation and can avoid the use of negative supply voltage

During turn-off, the gate voltage is monitored and the clamp output is activated when gate voltage goes below 2V (relative to GND). The clamp voltage is VL+3V max for Miller current up to 500mA. The clamp is disabled when IN input is triggered again.

Two level turn-on and turn-off

The two-level turn-on and turn-off are used to increase the reliability of the application.

During turn-on, the gate voltage can be reduced to a programmable level in order to reduce the maximum IGBT current before desaturation protection takes place.

During turn-off, gate voltage can also be reduced to a programmable level in order to reduce the IGBT current in case of over-current to avoid dangerous overvoltage across the IGBT and RBSOA problems specially at short circuit turn-off. Both turn-on (Tb) and turn-off (Ta) delays are programmable through external resistors and capacitors for accurate timing.

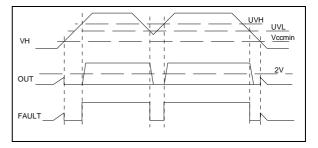
Turn-off delay (Ta) is also used to delay the input signal to prevent distortion of input pulse width

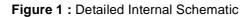
Minimum ON time

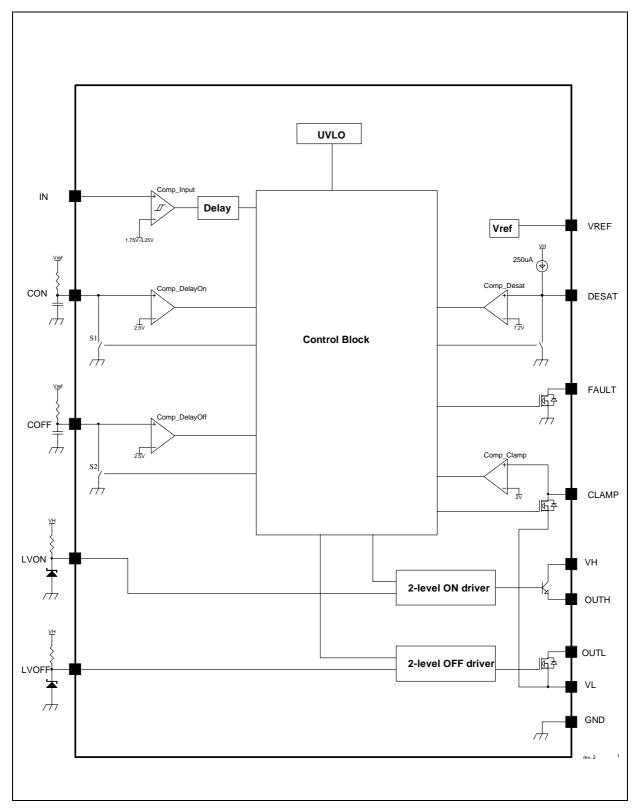
In normal operation, minimum ON input signals should be greater than Ta+Tb. Input signals smaller than Ta are ignored. Input signals larger than Ta+Tb are transmitted to the output stage with a delay of Ta with minimum width distortion (Δ Tw=Twout-Twin)

For input signals between Ta and Ta+Tb, the IGBT could be partially turned on. These input signals should be avoided during normal operation.

Output

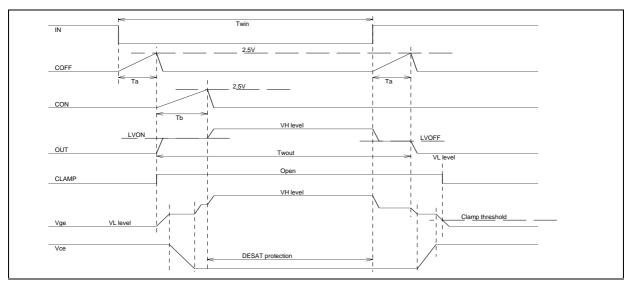

Output stage is able to sink/source 1.5A (0.75A min over full temperature range). Separated sink and source outputs allow independent gate charge and discharge control without extra external diode.

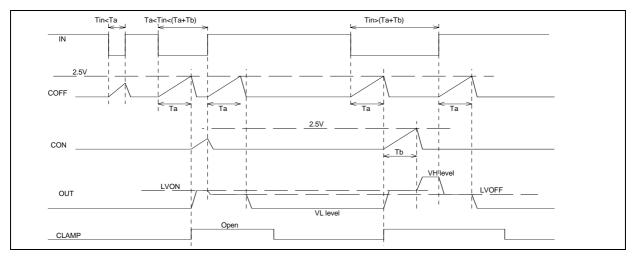

Fault status output


Fault output is used to signal a fault event (desaturation, UVLO) to a controller. Fault pin is designed to drive an optocoupler.

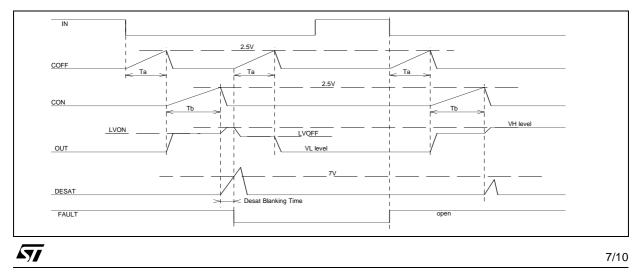
Undervoltage protection

Undervoltage detection protects the application in case of low VH supply voltage (during start-up or fault situation). During undervoltage, the OUTH pin is open and the OUTL pin is driven low (active pull-down for VH>2V, passive pull-down for VH<2V). Fault output signals the undervoltage state and is reset only when undervoltage state disappears.

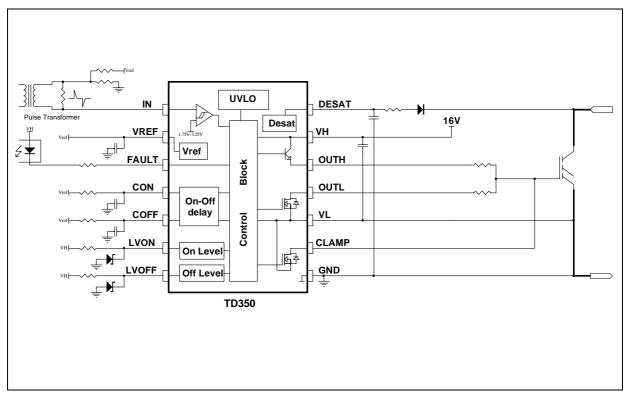



57

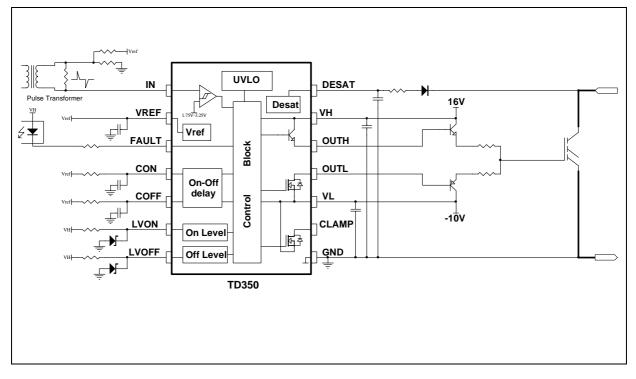
TIMING DIAGRAM


Turn-on and turn-off

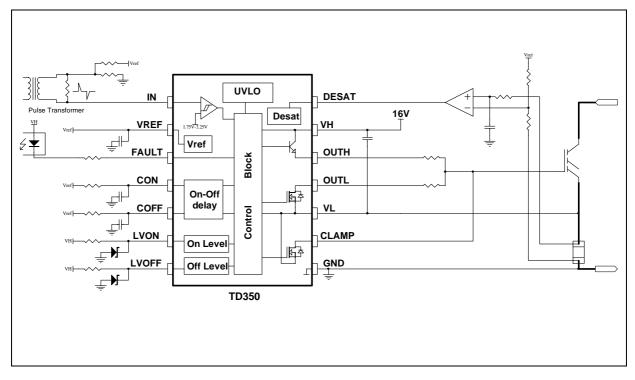
Minimum ON time



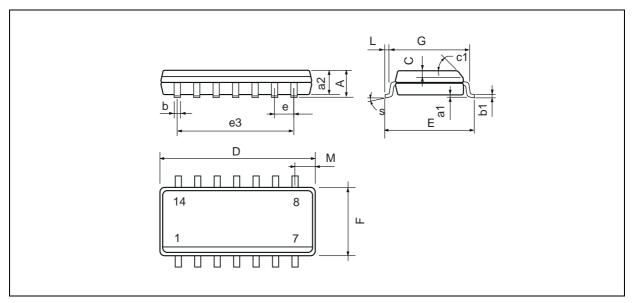
Desaturation fault



APPLICATION DIAGRAM


Single supply IGBT drive with active Miller clamp

Large IGBT drive with negative gate drive


57

Use of DESAT input for direct overcurrent detection

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensione	Millimeters			Inches			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
A			1.75			0.069	
a1	0.1		0.2	0.004		0.008	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1		·	45°	(typ.)		·	
D (1)	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F (1)	3.8		4.0	0.150		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.020		0.050	
М			0.68			0.027	
S	8° (max.)						

Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia

Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

© http://www.st.com

